By Topic

Information-theoretic software clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Andritsos, P. ; Dept. of Comput. Sci., Toronto Univ., Ont., Canada ; Tzerpos, V.

The majority of the algorithms in the software clustering literature utilize structural information to decompose large software systems. Approaches using other attributes, such as file names or ownership information, have also demonstrated merit. At the same time, existing algorithms commonly deem all attributes of the software artifacts being clustered as equally important, a rather simplistic assumption. Moreover, no method that can assess the usefulness of a particular attribute for clustering purposes has been presented in the literature. In this paper, we present an approach that applies information theoretic techniques in the context of software clustering. Our approach allows for weighting schemes that reflect the importance of various attributes to be applied. We introduce LIMBO, a scalable hierarchical clustering algorithm based on the minimization of information loss when clustering a software system. We also present a method that can assess the usefulness of any nonstructural attribute in a software clustering context. We applied LIMBO to three large software systems in a number of experiments. The results indicate that this approach produces clusterings that come close to decompositions prepared by system experts. Experimental results were also used to validate our usefulness assessment method. Finally, we experimented with well-established weighting schemes from information retrieval, Web search, and data clustering. We report results as to which weighting schemes show merit in the decomposition of software systems.

Published in:

Software Engineering, IEEE Transactions on  (Volume:31 ,  Issue: 2 )