By Topic

Unpredication, unscheduling, unspeculation: reverse engineering Itanium executables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Snavely, N. ; Dept. of Comput. Sci., Washington Univ., Seattle, WA, USA ; Debray, S. ; Andrews, G.R.

EPIC (explicitly parallel instruction computing) architectures, exemplified by the Intel Itanium, support a number of advanced architectural features, such as explicit instruction-level parallelism, instruction predication, and speculative loads from memory. However, compiler optimizations that take advantage of these features can profoundly restructure the program's code, making it potentially difficult to reconstruct the original program logic from an optimized Itanium executable. This paper describes techniques to undo some of the effects of such optimizations and thereby improve the quality of reverse engineering such executables.

Published in:

Software Engineering, IEEE Transactions on  (Volume:31 ,  Issue: 2 )