By Topic

Edge and corner detection by photometric quasi-invariants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
van de Weijer, J. ; Fac. of Sci., Amsterdam Univ., Netherlands ; Gevers, T. ; Geusebroek, J.-M.

Feature detection is used in many computer vision applications such as image segmentation, object recognition, and image retrieval. For these applications, robustness with respect to shadows, shading, and specularities is desired. Features based on derivatives of photometric invariants, which we is called full invariants, provide the desired robustness. However, because computation of photometric invariants involves nonlinear transformations, these features are unstable and, therefore, impractical for many applications. We propose a new class of derivatives which we refer to as quasi-invariants. These quasi-invariants are derivatives which share with full photometric invariants the property that they are insensitive for certain photometric edges, such as shadows or specular edges, but without the inherent instabilities of full photometric invariants. Experiments show that the quasi-invariant derivatives are less sensitive to noise and introduce less edge displacement than full invariant derivatives. Moreover, quasi-invariants significantly outperform the full invariant derivatives in terms of discriminative power.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 4 )