By Topic

Fast SVM training algorithm with decomposition on very large data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian-xiong Dong ; Dept. of Comput. Sci. & Software Eng., Concordia Univ., Montreal, Que., Canada ; Devroye, L. ; Suen, C.Y.

Training a support vector machine on a data set of huge size with thousands of classes is a challenging problem. This paper proposes an efficient algorithm to solve this problem. The key idea is to introduce a parallel optimization step to quickly remove most of the nonsupport vectors, where block diagonal matrices are used to approximate the original kernel matrix so that the original problem can be split into hundreds of subproblems which can be solved more efficiently. In addition, some effective strategies such as kernel caching and efficient computation of kernel matrix are integrated to speed up the training process. Our analysis of the proposed algorithm shows that its time complexity grows linearly with the number of classes and size of the data set. In the experiments, many appealing properties of the proposed algorithm have been investigated and the results show that the proposed algorithm has a much better scaling capability than Libsvm, SVMlight, and SVMTorch. Moreover, the good generalization performances on several large databases have also been achieved.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 4 )