Cart (Loading....) | Create Account
Close category search window
 

A theoretical and experimental investigation of graph theoretical measures for land development in satellite imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Unsalan, C. ; Dept. of Electr. & Electron. Eng., Yeditepe Univ., Istanbul, Turkey ; Boyer, K.L.

Today's commercial satellite images enable experts to classify region types in great detail. In previous work, we considered discriminating rural and urban regions. However, a more detailed classification is required for many purposes. These fine classifications assist government agencies in many ways including urban planning, transportation management, and rescue operations. In a step toward the automation of the fine classification process, this paper explores graph theoretical measures over grayscale images. The graphs are constructed by assigning photometric straight-line segments to vertices, while graph edges encode their spatial relationships. We then introduce a set of measures based on various properties of the graph. These measures are nearly monotonic (positively correlated) with increasing structure (organization) in the image. Thus, increased cultural activity and land development are indicated by increases in these measures - without explicit extraction of road networks, buildings, residences, etc. These latter, time consuming (and still only partially automated) tasks can be restricted only to "promising" image regions, according to our measures. In some applications our measures may suffice. We present a theoretical basis for the measures followed by extensive experimental results in which the measures are first compared to manual evaluations of land development. We then present and test a method to focus on, and (pre)extract, suburban-style residential areas. These are of particular importance in many applications, and are especially difficult to extract. In this work, we consider commercial IKONOS data. These images are orthorectified to provide a fixed resolution of 1 meter per pixel on the ground. They are, therefore, metric in the sense that ground distance is fixed in scale to pixel distance. Our data set is large and diverse, including sea and coastline, rural, forest, residential, industrial, and urban areas.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 4 )

Date of Publication:

April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.