By Topic

Salient closed boundary extraction with ratio contour

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Wang ; Dept. of Comput. Sci. & Eng., South Carolina Univ., Columbia, SC, USA ; T. Kubota ; J. M. Siskind ; J. Wang

We present ratio contour, a novel graph-based method for extracting salient closed boundaries from noisy images. This method operates on a set of boundary fragments that are produced by edge detection. Boundary extraction identifies a subset of these fragments and connects them sequentially to form a closed boundary with the largest saliency. We encode the Gestalt laws of proximity and continuity in a novel boundary-saliency measure based on the relative gap length and average curvature when connecting fragments to form a closed boundary. This new measure attempts to remove a possible bias toward short boundaries. We present a polynomial-time algorithm for finding the most-salient closed boundary. We also present supplementary preprocessing steps that facilitate the application of ratio contour to real images. We compare ratio contour to two closely related methods for extracting closed boundaries: Elder and Zucker's method based on the shortest-path algorithm and Williams and Thornber's method based on spectral analysis and a strongly-connected-components algorithm. This comparison involves both theoretic analysis and experimental evaluation on both synthesized data and real images.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 4 )