By Topic

Light source position and reflectance estimation from a single view without the distant illumination assumption

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Hara ; Dept. of Visual Commun. Design, Kyushu Univ., Fukuoka, Japan ; K. Nishino ; K. lkeuchi

Several techniques have been developed for recovering reflectance properties of real surfaces under unknown illumination. However, in most cases, those techniques assume that the light sources are located at infinity, which cannot be applied safely to, for example, reflectance modeling of indoor environments. In this paper, we propose two types of methods to estimate the surface reflectance property of an object, as well as the position of a light source from a single view without the distant illumination assumption, thus relaxing the conditions in the previous methods. Given a real image and a 3D geometric model of an object with specular reflection as inputs, the first method estimates the light source position by fitting to the Lambertian diffuse component, while separating the specular and diffuse components by using an iterative relaxation scheme. Our second method extends that first method by using as input a specular component image, which is acquired by analyzing multiple polarization images taken from a single view, thus removing its constraints on the diffuse reflectance property. This method simultaneously recovers the reflectance properties and the light source positions by optimizing the linearity of a log-transformed Torrance-Sparrow model. By estimating the object's reflectance property and the light source position, we can freely generate synthetic images of the target object under arbitrary lighting conditions with not only source direction modification but also source-surface distance modification. Experimental results show the accuracy of our estimation framework.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:27 ,  Issue: 4 )