By Topic

Simulated annealing using a reversible jump Markov chain Monte Carlo algorithm for fuzzy clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bandyopadhyay, S. ; Machine Intelligence Unit, Indian Stat. Inst., Kolkata, India

In this paper, an approach for automatically clustering a data set into a number of fuzzy partitions with a simulated annealing using a reversible jump Markov chain Monte Carlo algorithm is proposed. This is in contrast to the widely used fuzzy clustering scheme, the fuzzy c-means (FCM) algorithm, which requires the a priori knowledge of the number of clusters. The said approach performs the clustering by optimizing a cluster validity index, the Xie-Beni index. It makes use of the homogeneous reversible jump Markov chain Monte Carlo (RJMCMC) kernel as the proposal so that the algorithm is able to jump between different dimensions, i.e., number of clusters, until the correct value is obtained. Different moves, like birth, death, split, merge, and update, are used for sampling a candidate state given the current state. The effectiveness of the proposed technique in optimizing the Xie-Beni index and thereby determining the appropriate clustering is demonstrated for both artificial and real-life data sets. In a part of the investigation, the utility of the fuzzy clustering scheme for classifying pixels in an IRS satellite image of Kolkata is studied. A technique for reducing the computation efforts in the case of satellite image data is incorporated.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 4 )