By Topic

Compression, clustering, and pattern discovery in very high-dimensional discrete-attribute data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Koyuturk, M. ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Grama, A. ; Ramakrishnan, N.

This paper presents an efficient framework for error-bounded compression of high-dimensional discrete-attribute data sets. Such data sets, which frequently arise in a wide variety of applications, pose some of the most significant challenges in data analysis. Subsampling and compression are two key technologies for analyzing these data sets. The proposed framework, PROXIMUS, provides a technique for reducing large data sets into a much smaller set of representative patterns, on which traditional (expensive) analysis algorithms can be applied with minimal loss of accuracy. We show desirable properties of PROXIMUS in terms of runtime, scalability to large data sets, and performance in terms of capability to represent data in a compact form and discovery and interpretation of interesting patterns. We also demonstrate sample applications of PROXIMUS in association rule mining and semantic classification of term-document matrices. Our experimental results on real data sets show that use of the compressed data for association rule mining provides excellent precision and recall values (above 90 percent) across a range of problem parameters while reducing the time required for analysis drastically. We also show excellent interpretability of the patterns discovered by PROXIMUS in the context of clustering and classification of terms and documents. In doing so, we establish PROXIMUS as a tool for both preprocessing data before applying computationally expensive algorithms and directly extracting correlated patterns.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 4 )