By Topic

Throughput enhancement of IEEE 802.11 WLAN via frame aggregation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Youngsoo Kim ; Sch. of Electr. Eng., Seoul Nat. Univ., South Korea ; Sunghyun Choi ; Kyunghun Jang ; Hyosun Hwang

The popular IEEE 802.11 WLAN is known to achieve relatively small throughput performance compared to the underlying physical layer (PHY) transmission rate. This is due mainly to the large overheads composed of medium access control (MAC) header, PHY preamble/header, backoff time, acknowledgement (ACK) transmission, and some inter-frame spaces (IFSs). Since these overheads are added to each frame transmission, the throughput degradation is relatively high with small-size frames. In this paper, we present a frame aggregation (FA) scheme, which can improve the throughput performance. By aggregating small-size frames into a large frame, we can reduce these overheads relatively. We propose a simple method to implement the FA into the real testbed using off-the-shelf products via device driver modifications. The performance of the FA is evaluated by both numerical analysis and actual measurements from the real testbed. According to the measurement results, the FA can improve the throughput performance by 2 to 3 Mbps, when multiple frames are aggregated.

Published in:

Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th  (Volume:4 )

Date of Conference:

26-29 Sept. 2004