Cart (Loading....) | Create Account
Close category search window

Active-DEVS: a computational model for the simulation of forest fire propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper deals with the design of an efficient object model for propagation phenomena. It is applied to the phenomenological model developed at the University of Corsica, within the context of simulation of vegetation fires. The objective is to simulate large-scale fire propagation, and on the longer term to develop a decision aid tool to guide forest firemen and managers. Based on both cellular automata and discrete event specification (DEVS) formalisms, a new kind of model, called active-DEVS, is specified. Modeling methods based on enhanced cellular automata facilitate both spatial dynamic expression of propagation phenomena, and parallel architectures exploitation. However, such environments usually lack the ability to integrate easy component modifications. The DEVS formalism makes it possible to exploit the cellular models efficiently whatever their dimensions, and to reduce simulation times considerably. A simulation framework is developed to implement and compare active-DEVS model and classical discrete time system specification (DTSS) models. This framework relies on designs patterns, and thus keeps a modular, elegant and adaptable design.

Published in:

Systems, Man and Cybernetics, 2004 IEEE International Conference on  (Volume:2 )

Date of Conference:

10-13 Oct. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.