Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

An efficient PIM (Processor-In-Memory) architecture for BLAST

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

BLAST is a widely used tool to search for similarities in protein and DNA sequences. However, the kernels of BLAST are not efficiently supported by general-purpose processors because of the special computational requirements of the kernels. In this paper, we propose an efficient PIM (Processor-In-Memory) architecture to effectively execute the kernels of BLAST. We propose not only to reduce the memory latencies and increase the memory bandwidth but also to execute the operations inside the memory where the data are located. We also propose to execute the operations in parallel by dividing the memory into small segments and by having each of these segments executes operations concurrently. Our simulation results show that our computing paradigm provides a 242x performance improvement for the executions of the kernels and a 12x performance improvement for the overall execution of BLAST.

Published in:

Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on  (Volume:1 )

Date of Conference:

7-10 Nov. 2004