Cart (Loading....) | Create Account
Close category search window
 

Numerical modeling of ultrasound imaging using contrast agents for particle image velocimetry in vivo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mukdadi, O.M. ; Dept. of Mechanical Eng., Colorado Univ., Boulder, CO, USA ; Kim, H.B. ; Hertzberg, J.R. ; Shandas, R.

Non-invasive in vivo medical ultrasound imaging using contrast agents requires further physical understanding of ultrasound wave propagation phenomenon in tissue and scattering from microbubbles. Cumulative nonlinearity exhibited by wave motion in tissue and local nonlinearity by microbubble dynamics are strongly influence the imaging technique and microbubble detectability. The wave propagation in tissue is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Pressure-wave scattering from microbubbles, seeded in the blood stream, is modeled using Rayleigh-Plesset-type equation. The continuity and the radial-momentum equations of encapsulated microbubbles are employed to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on pressure-wave propagation and scattering. These nonlinearities have a strong influence on the waveform distortion and harmonic generation. Results also show that microbubbles have stronger nonlinearity than that of tissue, and thus improves signal-to-noise ratio.

Published in:

Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on

Date of Conference:

15-18 April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.