Cart (Loading....) | Create Account
Close category search window
 

A probabilistic framework for the detection and tracking in time of multiple sclerosis lesions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shahar, A. ; Dept. of Biomed. Eng., Tel Aviv Univ., Israel ; Greenspan, H.

A novel statistical scheme for the automatic detection and tracking in time of relapsing-remitting multiple sclerosis (MS) lesions in image sequences is described. Coherent space-time regions in a four-dimensional feature space (intensity, position (x,y), and time) are extracted by unsupervised clustering using Gaussian mixture modeling. The segments in the sequence pertaining to lesions are automatically detected by context-based classification mechanisms. Lesion segmentation and tracking are performed in a unified manner and not separately, as in other works. A model adaptation stage, in which space-time regions are merged, is introduced for the improvement of lesions' delineation. Qualitative and quantitative results for a sequence of 24 images are shown. The framework's results were validated by comparison to an expert's manual delineation.

Published in:

Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on

Date of Conference:

15-18 April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.