Cart (Loading....) | Create Account
Close category search window
 

A new approach for 3D segmentation of cellular tomograms obtained using three-dimensional electron microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Bartesaghi, A. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Sapiro, G. ; Lee, S. ; Lefman, J.
more authors

Electron tomography allows determination of the three-dimensional structures of cells and tissues at resolutions significantly higher than is possible with optical microscopy. Electron tomograms contain, in principle, vast amounts of information on the locations and architectures of large numbers of subcellular assemblies and organelles. The development of reliable quantitative approaches for interpretation of features in tomograms, is an important problem, but is a challenging prospect because of the low signal-to-noise ratios that are inherent to biological electron microscopic images. As a first step in this direction, we report methods for the automated statistical analysis of HIV particles and selected cellular compartments in electron tomograms recorded from fixed, plastic-embedded sections derived from HIV-infected human macrophages. Individual features in the tomogram are segmented using a novel, robust algorithm that finds their boundaries as global minimal surfaces in a metric space defined by image features. Our expectation is that such methods will provide tools for semi-automated detection and statistical evaluation of HIV particles at different stages of assembly in the cells, and present opportunities for correlation with biochemical markers of HIV infection.

Published in:

Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on

Date of Conference:

15-18 April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.