By Topic

Structural optimization of SUTBDG devices for low-power applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shiying Xiong ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Bokor, J.

In this paper, we investigate the impact of physical structure on the performance of symmetric ultrathin body double-gate devices for low-operating-power (LOP) applications. Devices with regular raised source/drain (S/D) structures have optimal spacer thicknesses governed by a tradeoff between fringing capacitance and series resistance. Expanded S/D structures improve on regular raised S/D structures by slowing down the increases in both fringing capacitance with gate height and series resistance with spacer thickness. The cost is more chip area and process complexity. Pure high-κ gate dielectrics raise the off-state current (IOFF) due to the fringing field-induced barrier lowering effect. Suppressing the IOFF increase requires either a significant reduction in equivalent oxide thickness or a significant shift in gate work function. If the gate work function is tuned to maintain a fixed IOFF, devices with less abrupt S/D-channel junctions suffer a drive current (ION) degradation, and devices with weakly coupling S/D and relatively thick bodies gain improvements in ION. The ION of a device with metal S/D is significantly lower than required for LOP applications, if the S/D Schottky barrier height (SBH) is over 200 meV. We also briefly discuss the impact of mobility degradation on this structural optimization.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 3 )