By Topic

On the scaling laws of dense wireless sensor networks: the data gathering channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
El Gamal, H. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA

We consider dense wireless sensor networks deployed to observe arbitrary random fields. The requirement is to reconstruct an estimate of the random field at a certain collector node. This creates a many-to-one data gathering wireless channel. In this note, we first characterize the transport capacity of many-to-one dense wireless networks subject to a constraint on the total average power. In particular, we show that the transport capacity scales as Theta(log(N)) when the number of sensors N grows to infinity and the total average power remains fixed. We then use this result along with some information-theoretic tools to derive sufficient and necessary conditions that characterize the set of observable random fields by dense sensor networks. In particular, for random fields that can be modeled as discrete random sequences, we derive a certain form of source/channel coding separation theorem. We further show that one can achieve any desired nonzero mean-square estimation error for continuous, Gaussian, and spatially bandlimited fields through a scheme composed of single-dimensional quantization, distributed Slepian-Wolf source coding, and the proposed antenna sharing strategy. Based on our results, we revisit earlier conclusions about the feasibility of data gathering applications using dense sensor networks.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 3 )