By Topic

On the monomiality of nice error bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Klappenecker, A. ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA ; Rotteler, M.

Unitary error bases generalize the Pauli matrices to higher dimensional systems. Two basic constructions of unitary error bases are known: An algebraic construction by Knill that yields nice error bases, and a combinatorial construction by Werner that yields shift-and-multiply bases. An open problem posed by Schlingemann and Werner relates these two constructions and asks whether each nice error basis is equivalent to a shift-and-multiply basis. We solve this problem and show that the answer is negative. However, we find that nice error bases have more structure than one can anticipate from their definition. In particular, we show that nice error bases can be written in a form in which at least half of the matrix entries are 0.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 3 )