By Topic

α-parallel prior and its properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Takeuchi, J. ; Internet Syst. Res. Labs., NEC Corp., Kanagawa, Japan ; Amari, S.-I.

It is known that the Jeffreys prior plays an important role in statistical inference. In this paper, we generalize the Jeffreys prior from the point of view of information geometry and introduce a one-parameter family of prior distributions, which we named the α-parallel priors. The α-parallel prior is defined as the parallel volume element with respect to the α-connection and coincides with the Jeffreys prior when α=0. Further, we analyze asymptotic behavior of the various estimators such as the projected Bayes estimator (the estimator obtained by projecting the Bayes predictive density onto the original class of distributions) and the minimum description length (MDL) estimator, when the α-parallel prior is used. The difference of these estimators from maximum-likelihood estimator (MLE) due to the α-prior is shown to be regulated by an invariant vector field of the statistical model. Although the Jeffreys prior always exists, the existence of α-parallel prior with α ≠ 0 is not always guaranteed. Hence, we consider conditions for the existence of the α-parallel prior, elucidating the conjugate symmetry in a statistical model.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 3 )