By Topic

Hygro-thermo-mechanical modeling of mixed flip-chip and wire bond stacked die BGA module with molded underfill

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

Package reliability needs to be considered for the design of mixed flip-chip (FC)-wire bond (WB) stacked die BGA module with molded underfill (MUF). The success of the MUF application depends on its performance in thermal shock (TS) test and pressure cooker test (PCT). Mechanical properties (modulus and adhesion strength) of MUF after post mold cure (PMC), reflow and PCT are measured. Shear strength between die and MUF under various temperature and moisture conditions are also characterized. The results show that reflow process and PCT degrade the material properties and adhesion strength. Hygro-mechanical properties, i.e. coefficient of moisture expansion (CME) and saturated moisture concentration (Csat), are also measured. Based on the measured mechanical and moisture properties, a combined hygro-mechanical and thermo-mechanical stress modeling is performed on the FC-WB stacked die BGA package to compare three types of MUF materials at various temperatures (-40degC, 25degC, 121degC and 150degC) and PCT condition. It is observed that MUF-D3 material induces the lowest stresses on the die active surface. Die stresses induced by MUF with that of conventional mold compound and underfill materials are also compared. The analysis helps in material selection of MUF to enhance the die and package reliability of BGA module

Published in:

Electronics Packaging Technology Conference, 2004. EPTC 2004. Proceedings of 6th

Date of Conference:

8-10 Dec. 2004