System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Reduced-rank channel estimation for time-slotted mobile communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nicoli, M. ; Dipt. di Elettronica e Infoimazione, Politecnico di Milano, Italy ; Spagnolini, U.

In time-slotted mobile communication systems with antenna array at the receiver, the space-time channel matrix is conventionally estimated by transmitting pilot symbols within each data packet (or block). This work is focused on reduced rank (RR) estimation methods that exploit the low-rank property of the space-time channel matrix to estimate single or multiple user channels from the observation of single or multiple training blocks. The proposed RR methods allow to improve the estimate accuracy by reducing the set of unknown parameters (rank reduction) and extending the training set (multiblock processing). The maximum likelihood RR estimate is obtained as the projection of the prewhitened full-rank (FR) estimate onto the spatial or temporal signal subspace. The paper shows that, even for time varying channels, these subspaces can be considered to be slowly varying, and therefore, they can be estimated with increased accuracy by properly exploiting training signals from several blocks. The analytical and numerical performance in terms of mean square error for the RR estimate shows that the main advantage of the proposed method with respect to the conventional FR one can be ascribed to the reduced complexity of the channel parameterization.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 3 )