By Topic

Stochastic gradient-based implementation of spatially preprocessed speech distortion weighted multichannel Wiener filtering for noise reduction in hearing aids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spriet, A. ; Dept. of Electr. Eng., Katholieke Univ. Leuven, Belgium ; Moonen, M. ; Wouters, J.

Recently, a generalized noise reduction scheme has been proposed, called the Spatially Preprocessed, Speech Distortion Weighted, Multichannel Wiener Filter (SP-SDW-MWF). It encompasses the Generalized Sidelobe Canceller (GSC) and a multichannel Wiener filtering technique as extreme cases. Compared with the widely studied GSC with Quadratic Inequality Constraint (QIC-GSC), the SP-SDW-MWF achieves a better noise reduction performance for a given maximum speech distortion level. We develop a low-cost, stochastic gradient implementation of the SP-SDW-MWF. To speed up convergence and reduce computational complexity, the algorithm is implemented in the frequency domain. Experimental results with a behind-the-ear hearing aid show that the proposed frequency-domain stochastic gradient algorithm preserves the benefit of the exact SP-SDW-MWF over the QIC-GSC, while its computational cost is comparable to the least mean square-based scaled projection algorithm for QIC-GSC.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 3 )