By Topic

Analytical design method for optimal equiripple comb FIR filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Zahradnik ; Dept. of Telecommun. Technol., Czech Tech. Univ., Prague, Czech Republic ; M. Vlcek

A novel analytical design method for highly selective digital optimal equiripple comb finite-impulse response (FIR) filters is presented. The equiripple comb FIR filters are optimal in the Chebyshev sense. The number of notch bands, the width of the notch bands and the attenuation in the passbands can be independently specified. The degree formula and the differential equation for the generating polynomial of the filter is presented. Based on the differential equation, a fast simple algebraic recursive procedure for the evaluation of the impulse response of the filter is described. Its arithmetic robustness outperforms, by far, the known analytical design method. Highly selective equiripple comb FIR filters with thousands of coefficients can be designed. One example demonstrates the efficiency of the filter design.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:52 ,  Issue: 2 )