By Topic

Human-centered concepts for exploration and understanding of Earth observation images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Datcu ; German Aerosp. Center, Wessling, Germany ; K. Seidel

The progress in information retrieval, computer vision, and image analysis makes it possible to establish very complete bases of algorithms and operators. A specialist in remote sensing or image processing now has the tools that allow him, at least in theory, to configure applications solving complex problems of image understanding. However, in reality, earth observation (EO) data analysis is still performed in a very laborious way at the end of repeated cycles of trial and error. To overcome this, we proposed a novel advanced remote sensing information processing system knowledge-driven information mining (KIM). KIM is based on human-centered concepts (HCCs), which implements new features and functions allowing improved feature extraction, search on a semantic level, the availability of collected knowledge, interactive knowledge discovery, and new visual user interfaces. We assess the HCC methodology for solving several difficult tasks in EO image interpretation, using a broad variety of sensor data, from meter-resolution synthetic aperture radar and optical images to hyperspectral data.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 3 )