By Topic

Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Plaza ; Neural Networks & Signal Process. Group, Univ. of Extremadura, Caceres, Spain ; P. Martinez ; J. Plaza ; R. Perez

This work describes sequences of extended morphological transformations for filtering and classification of high-dimensional remotely sensed hyperspectral datasets. The proposed approaches are based on the generalization of concepts from mathematical morphology theory to multichannel imagery. A new vector organization scheme is described, and fundamental morphological vector operations are defined by extension. Extended morphological transformations, characterized by simultaneously considering the spatial and spectral information contained in hyperspectral datasets, are applied to agricultural and urban classification problems where efficacy in discriminating between subtly different ground covers is required. The methods are tested using real hyperspectral imagery collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory Airborne Visible-Infrared Imaging Spectrometer and the German Aerospace Agency Digital Airborne Imaging Spectrometer (DAIS 7915). Experimental results reveal that, by designing morphological filtering methods that take into account the complementary nature of spatial and spectral information in a simultaneous manner, it is possible to alleviate the problems related to each of them when taken separately.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 3 )