By Topic

Local current distribution and electrical properties of a magnetic tunnel junction using conducting atomic force microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Canizo-Cabrera, A. ; Taiwan SPIN Res. Center, Nat. Yunlin Univ. of Sci. & Technol., Touliu, Taiwan ; Li, Simon C. ; Shu, Min-Fong ; Jia-Mou Lee
more authors

Local topographical and electrical properties were simultaneously measured for a magnetic tunnel junction formed by Ta (50 Å)/Ni-Fe (20 Å)/Cu (50 Å)/Mn75 Ir25 (100 Å)/Co70Fe30(40 Å)/Al-O (8-15 Å)/Co70Fe30 (40 Å)/Ni-Fe (100 Å)/Ta (50 Å). Local current-voltage (I-V) characteristic curves were obtained for different contrast levels in the electrical current distribution images on the test sample. With the purpose of obtaining quantitative values for the barrier characteristics, data was analyzed by the Simmons' equation from -1.0 to 1.0 V. The magnetoresistance ratio values were estimated to be 35.02%, with a bias voltage of 0.36 V, when applying a magnetic field of ±200 Oe. In addition, a study on the ramping effect on the dielectric tunneling capacitance and analytical resistance-capacitance (RC) model were carried out.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 2 )