By Topic

Optimization of wide-bandwidth hard disk drive actuator design using statistical methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dongho Oh ; Samsung Adv. Inst. of Technol., Giheung, South Korea ; Ja Choon Koo ; Cheol-Soon Kim ; Yongkyu Byun

As track density of hard disk drives is intensified, actuator dynamics has emerged as one of the most important design factors not only for high-performance models but also desktop applications. In spite of many different complex physical considerations required for successful wide-bandwidth actuator designs, most current design processes that rely purely upon designer's experience-based historical approaches do not effectively account all factors to determine optimum design. A development of design optimization procedure for a high-performance actuator is presented in this paper. A position error signal (PES) estimator employing both numerical model and experimental data is developed for effective and accurate optimization process. Statistically formulated optimization method presented here delivers not only wide-bandwidth actuator design for PES reduction but higher shockproof HDA design. Furthermore the presented method incorporates volume production parameters so that designers are able to predict design tolerance and cost relations.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 2 )