By Topic

Intelligent image prefetching for supporting radiologists' primary reading: a decision-rule inductive learning approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chih-Ping Wei ; Dept. of Inf. Manage., Nat. Sun Yat-Sen Univ., Taiwan, Taiwan ; Jen-Hwa Hu, P. ; Sheng, O.R.L. ; Yen-Hsien Lee

The expanded role of radiology in clinical medicine and its emerging digital practice have made patient-image management a growing concern for health-care organizations. A fundamental aspect of patient-image management is to provide a radiologist with convenient access to prior images relevant to his or her reading of a recently taken radiological examination. For confirmation or evaluation purposes, radiologists often reference relevant prior images of the same patient when interpreting the images of a current examination. To alleviate the time and physical requirements on radiologists, many health-care organizations have taken a prefetching strategy for meeting their patient-image reference needs. Radiologists' patient-image reference knowledge understandably may exhibit subtle individual variations and dynamically evolves over time, thus making the artificial intelligence-based inductive learning approach appealing. Central to patient-image prefetching is a knowledge base of which knowledge elements need continual update and individual customization. In this study, we extended a decision rule induction technique (i.e., CN2 algorithm) to address the challenging characteristics of the targeted learning. We experimentally evaluated the extended algorithm using the learning performances achieved by backpropagation neural network as benchmarks. Overall, our evaluation results suggest that the extended algorithm exhibited satisfactory learning effectiveness and, at the same time, showed desirable noise tolerance, immunity to missing data, and robustness in relation to limited training data.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:35 ,  Issue: 2 )