By Topic

Daily imaging scheduling of an Earth observation satellite

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei-Cheng Lin ; Electr. Eng. Dept., Nat. Taiwan Univ., Taipei, Taiwan ; Da-Yin Liao ; Chung-Yang Liu ; Yong-Yao Lee

This work presents the development of a daily imaging scheduling system for a low-orbit, Earth observation satellite. The daily imaging scheduling problem of satellite considers various imaging requests with different reward opportunities, changeover efforts between two consecutive imaging tasks, cloud-coverage effects, and the availability of the spacecraft resource. It belongs to a class of single-machine scheduling problems with salient features of sequence-dependent setup, job assembly, and the constraint of operating time windows. The scheduling problem is formulated as an integer-programming problem, which is NP-hard in computational complexity. Lagrangian relaxation and linear search techniques are adopted to solve this problem. In order to demonstrate the efficiency and effectiveness of our solution methodology, a Tabu search-based algorithm is implemented, which is modified from the algorithm in Vasquez and Hao, 2001. Numerical results indicate that the approach is very effective to generate a near-optimal, feasible schedule for the imaging operations of the satellite. It is efficient in applications to the real problems. The Lagrangian-relaxation approach is superior to the Tabu search one in both optimality and computation time.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:35 ,  Issue: 2 )