Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Plasma-enhanced metal-organic chemical vapor deposition (PEMOCVD) of catalytic coatings for fuel cell reformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dhar, R. ; Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA ; Pedrow, P.D. ; Liddell, K.C. ; Quentin Ming
more authors

Fuel cells have the potential to solve several major challenges in the global energy economy: dependence on petroleum imports, degradation of air quality, and greenhouse gas emissions. Using catalyst-based reformer technology, hydrogen for fuel cells can be derived from infrastructure fuels such as gasoline, diesel, and natural gas. Platinum is one catalyst that is known to be very effective in hydrogen reformers. Reformer size can be reduced when there is more efficient catalyst loading onto the substrate. In this experimental work, platinum was loaded onto γ-alumina coated substrates by plasma-polymerization followed by heat treatment. Vapor from a platinum-containing organic precursor was converted to plasma and deposited onto the substrate. The plasma-polymerized film was then calcined to drive off organic material, leaving behind a catalyst-loaded substrate. The plasma-polymerized organic film and the final heat-treated catalyst-loaded substrate surface were characterized by scanning electron microscopy (SEM) and impedance spectroscopy. Energy dispersive spectroscopy (EDS) was used to detect the presence of the catalyst on the substrate.

Published in:

Plasma Science, IEEE Transactions on  (Volume:33 ,  Issue: 1 )