By Topic

NIF neutron bang time detector prototype test on OMEGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Glebov, V.Yu. ; Lab. for Laser Energetics, Univ. of Rochester, NY, USA ; Stoeckl, C. ; Sangster, T.C. ; Roberts, S.
more authors

The time interval between the beginning of the laser pulse and the peak of neutron emission (bang time) is an important characteristic of inertial confinement fusion (ICF) implosions, directly comparable to numerical simulation. For this reason, neutron bang time (NBT) detectors have been successfully operated on ICF facilities such as the Nova and OMEGA lasers, and have been proposed as a core diagnostic for the National Ignition Facility (NIF). Prototypes of the NBT detector suitable for the NIF have been built and tested on the 60-beam OMEGA laser system. These prototypes have three channels. The first, most-sensitive channel consists of a fast plastic scintillator coupled with a microchannel-plate (MCP) photomultiplier tube (PMT). The second and third channels are based on a synthetic polycrystalline diamond produced by chemical vapor deposition (CVD). These three independent channels will be able to cover a wide range of DD and DT neutron yields: from 1×109 to 1×1016. The signals from the NBT prototype channels are recorded on a fast digital oscilloscope. Absolute timing was accomplished using the OMEGA optical fiducial system. The NIF NBT prototypes show better than 100-ps timing accuracy, satisfying the NIF specification.

Published in:

Plasma Science, IEEE Transactions on  (Volume:33 ,  Issue: 1 )