By Topic

Radiation from laser accelerated electron bunches: coherent terahertz and femtosecond X-rays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Leemans, Wim P. ; Lawrence Berkeley Nat. Lab., Univ. of California, Berkeley, CA, USA ; Esarey, E. ; van Tilborg, J. ; Michel, P.A.
more authors

Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultrashort electron bunches (femtosecond duration) with relativistic energies reaching toward a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short-pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offer a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: coherent terahertz emission, and X-ray emission based on betatron oscillations and Thomson scattering.

Published in:

Plasma Science, IEEE Transactions on  (Volume:33 ,  Issue: 1 )