By Topic

An observer-based robust adaptive controller for permanent magnet synchronous motor drive with initial rotor angle uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xie Yue ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Vilathgamuwa, D.M. ; King-Jet Tseng

An observer-based robust adaptive nonlinear position and speed tracking controller is developed for a permanent magnet synchronous motor with initial rotor angle uncertainty. The unknown initial rotor position is treated as a constant motor parameter in the development of the controller. An incremental encoder, which provides relative position variation of the rotor, is used along with stator current signals to achieve stable control. However, the controller does not require the knowledge of motor parameters and it only assumes friction, external disturbances, and model uncertainties are bounded. By using state observers, the measurement of acceleration and load torque, which is required usually in the nonlinear controller design with high tracking performance, is avoided. The stability of the control system and tracking convergence are guaranteed using Lyapunov theory. Finally, the stability and efficacy of the proposed drive system are verified by experimental results.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:20 ,  Issue: 1 )