By Topic

Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu, C. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Yan, L.-S. ; Luo, T. ; Wang, Y.
more authors

We demonstrate a simple technique for width-tunable optical return-to-zero pulse train generation based on four-wave mixing in highly nonlinear fiber. By electrically tuning the delay between two pump pulse trains, the pulsewidth of a generated pulse train is continuously tuned. In our experiment, the full-width at half-maximum (FWHM) of a 5G pulse train is tuned from 85 to 25 ps, and the FWHM of a 10G pulse train is tuned from 33 to 18 ps. And the simulation results show that the FWHM of a 40G pulse train can be tuned continuously from 10.6 to 2.9 ps. Negligible power penalty is observed after 59-km single-mode fiber and 11.4-km dispersion-compensation-fiber transmission for different pulsewidths at 10 Gb/s.

Published in:

Photonics Technology Letters, IEEE  (Volume:17 ,  Issue: 3 )