Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Fast free-vibration modal analysis of 2-D physics-based deformable objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krinidis, S. ; Dept. of Informatics, Aristotle Univ. of Thessaloniki, Greece ; Pitas, I.

This paper presents an accurate, very fast approach for the deformations of two-dimensional physically based shape models representing open and closed curves. The introduced models are much faster than other deformable models (e.g., finite-element methods). The approach relies on the determination of explicit deformation governing equations that involve neither eigenvalue decomposition, nor any other computationally intensive numerical operation. The approach was evaluated and compared with another fast and accurate physics-based deformable shape model, both in terms of deformation accuracy and computation time. The conclusion is that the introduced model is completely accurate and is deformed very fast on current personal computers (Pentium III), achieving more than 380 contour deformations per second.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 3 )