By Topic

Beat tracking of musical performances using low-level audio features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. A. Sethares ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin-Madison, Madison, WI, USA ; R. D. Morris ; J. C. Sethares

This paper presents and compares two methods of tracking the beat in musical performances, one based on a Bayesian decision framework and the other a gradient strategy. The techniques can be applied directly to a digitized performance (i.e., a soundfile) and do not require a musical score or a MIDI transcription. In both cases, the raw audio is first processed into a collection of "rhythm tracks" which represent the time evolution of various low-level features. The Bayesian approach chooses a set of parameters that represent the beat by modeling the rhythm tracks as a concatenation of random variables with a patterned structure of variances. The output of the estimator is a trio of parameters that represent the interval between beats, its change (derivative), and the position of the starting beat. Recursive (and potentially real time) approximations to the method are derived using particle filters, and their behavior is investigated via simulation on a variety of musical sources. The simpler method, which performs a gradient descent over a window of beats, tends to converge more slowly and to undulate about the desired answer. Several examples are presented that highlight both the strengths and weaknesses of the approaches.

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:13 ,  Issue: 2 )