Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Multiresolution sinusoidal model with dynamic segmentation for timescale modification of polyphonic audio signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jang, H.K. ; Multimedia Solution Group, Nextreaming Corp., Seoul, South Korea ; Ju Sung Park

In this paper, we propose an efficient sinusoidal model of polyphonic audio signals especially good for the application of timescale modification. One of the critical problem of sinusoidal modeling is that the signal is smeared during the synthesis frame, which is a very undesirable effect for transient parts. We solve this problem by introducing multiresolution analysis-synthesis and dynamic segmentation methods. A signal is modeled with a sinusoidal component and a noise component. A multiresolution filter bank is applied to an input signal which splits it into octave-spaced subbands without causing aliasing and then sinusoidal analysis is applied to each subband signal. To alleviate smearing of transients during synthesis, a dynamic segmentation method is applied to the subband signals that determines the optimal analysis-synthesis frame size adaptively to fit its time-frequency characteristics. To extract sinusoidal components and calculate respective parameters, a matching pursuit algorithm is applied to each analysis frame of the subband signal. A psychoacoustic model implementing frequency masking is incorporated with matching pursuit to provide a reasonable stop condition of iteration and reduce the number of sinusoids. The noise component obtained by subtracting the synthesized signal with sinusoidal components from the original signal is modeled by a line-segment model of short time spectrum envelope. For various polyphonic audio signals, the results of simulation shows the proposed sinusoidal modeling can synthesize original signals without loss of perceptual quality and do more robust and high-quality timescale modification for large scale factors.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 2 )