By Topic

Image estimation in film-grain noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sadhar, S.I. ; Dept. of Electr. Eng., Indian Inst. of Technol. Madras, Chennai, India ; Rajagopalan, A.N.

A method based on the particle filter for recovering images degraded by film-grain noise is proposed. Due to the nonlinear relationship between the silver density and exposure, film-grain noise manifests itself as multiplicative non-Gaussian noise in the exposure domain. Since the posterior density is non-Gaussian, the proposed method works by representing it by a set of samples with associated weights. These samples are propagated in a recursive framework to obtain an optimal estimate of the original image. The effectiveness of the method is demonstrated with examples.

Published in:

Signal Processing Letters, IEEE  (Volume:12 ,  Issue: 3 )