By Topic

Handling continuous attributes in an evolutionary inductive learner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Divina, F. ; Dept. of Comput. Sci., Vrije Univ. van Amsterdam, Netherlands ; Marchiori, E.

This work analyzes experimentally discretization algorithms for handling continuous attributes in evolutionary learning. We consider a learning system that induces a set of rules in a fragment of first-order logic (evolutionary inductive logic programming), and introduce a method where a given discretization algorithm is used to generate initial inequalities, which describe subranges of attributes' values. Mutation operators exploiting information on the class label of the examples (supervised discretization) are used during the learning process for refining inequalities. The evolutionary learning system is used as a platform for testing experimentally four algorithms: two variants of the proposed method, a popular supervised discretization algorithm applied prior to induction, and a discretization method which does not use information on the class labels of the examples (unsupervised discretization). Results of experiments conducted on artificial and real life datasets suggest that the proposed method provides an effective and robust technique for handling continuous attributes by means of inequalities.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:9 ,  Issue: 1 )