By Topic

SAT-based complete don't-care computation for network optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mishchenko, A. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Brayton, R.K.

The paper describes an improved approach to Boolean network optimization using internal don't-cares. The improvements concern the type of don't-cares computed, their scope, and the computation method. Instead of the traditionally used compatible observability don't-cares (CODCs), we introduce and justify the use of complete don't-cares (CDC). To ensure the robustness of the don't-care computation for very large industrial networks, an optional windowing scheme is implemented that computes substantial subsets of the CDCs in reasonable time. Finally, we give a SAT-based don't-care computation algorithm that is more efficient than BDD-based algorithms. Experimental results confirm that these improvements work well in practice. Complete don't-cares allow for a reduction in the number of literals compared to the CODCs. Windowing guarantees robustness, even for very large benchmarks on which previous methods could not be applied. SAT reduces the runtime and enhances robustness, making don't-cares affordable for a variety of other Boolean methods applied to the network.

Published in:

Design, Automation and Test in Europe, 2005. Proceedings

Date of Conference:

7-11 March 2005