By Topic

Feature preserving motion compression based on hierarchical curve simplification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Etou ; Graduate Sch. of Inf. Sci. & Electr. Eng., Kyushu Univ., Kasugai, Japan ; Y. Okada ; K. Niijima

The authors have been studying motion database systems. When entering an example motion as the query for the similarity search of motion data, it is natural to enter it as a semantic primitive motion, i.e., "walk", "jump", "run" and so on. Mostly, one motion data consists of several primitive motions. It is necessary to divide a composite motion into primitive motions. There are no algorithms able to automatically divide a composite motion into semantic primitive motions perfectly because the semantic meanings of primitive motions are strongly depending upon the human senses. A curve simplification algorithm is used for the key-posture extraction from motion data. This helps us to divide a composite motion into its primitive motions. The key-posture extraction is also used for the motion compression. In this paper, the authors propose a new efficient key-posture extraction method that hierarchically applies the curve simplification algorithm to the feature joints of a human figure model

Published in:

Multimedia and Expo, 2004. ICME '04. 2004 IEEE International Conference on  (Volume:2 )

Date of Conference:

30-30 June 2004