By Topic

Statistical neural networks and support vector machine for the classification of genetic mutations in ovarian cancer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sehgal, M.S.B. ; Gippsland Sch. of Comput. & Inf. Technol., Monash Univ., Clayton, Vic., Australia ; Gondal, I. ; Dooley, L.

An optimal genetic mutation diagnosis requires proper selection of mutation classifier. This work investigates the performance of different classification, missing value estimation (MVE) and data dimension reduction techniques for the classification of gene expression data for BRCA1, BRCA2 and Sporadic mutations of epithelial ovarian cancer. Bayesian MVE and zero imputation techniques were employed to deal with missing values. Our study showed the better performance of the Bayesian technique. A novel approach is introduced to use generalized regression neural network (GRNN) as genetic mutation classifier which completely outperformed both well established support vector machine and probabilistic neural network.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology, 2004. CIBCB '04. Proceedings of the 2004 IEEE Symposium on

Date of Conference:

7-8 Oct. 2004