By Topic

Analyzing fuzzy partitions of Saccharomyces cerevisiae cell-cycle gene expression data by Bayesian validation method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Si-Ho Yoo ; Dept. of Comput. Sci., Yonsei Univ., South Korea ; Chanho Park ; Sung-Bae Cho

Clustering of gene expression profiles has been used for gene function identification. Since the genes usually belong to multiple functional families, fuzzy clustering methods are appropriate. However, a natural way to measure the quality of the fuzzy cluster partitions is still required. A Bayesian validation method for fuzzy partition selection with the largest posterior probability given the dataset is proposed. This method is compared to four representative fuzzy cluster validity measures using fuzzy c-means algorithm on four well-known datasets in terms of the number of clusters predicted in the data. An analysis of Saccharomyces cerevisiae cell cycle gene expression data follows to show the usefulness of the proposed method.

Published in:

Computational Intelligence in Bioinformatics and Computational Biology, 2004. CIBCB '04. Proceedings of the 2004 IEEE Symposium on

Date of Conference:

7-8 Oct. 2004