Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Direct nonlinear primal-dual interior-point method for transient stability constrained optimal power flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xia, Y. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ. ; Chan, K.W. ; Liu, M.

The modern deregulated environment has driven utilities around the world to operate their power systems closer to their stability boundary for better use of transmission networks. A new approach of transient-stability-constrained optimal power flow (OPF), which can be used for the maximising system efficiency without violating any transient-stability limits, is presented. With the technique of equivalent transformation, transient-stability constraints are incorporated into the conventional OPF formulation. Jacobian and Hessian matrices of the transient-stability constraints are derived for the application of the direct nonlinear primal-dual interior-point method with quadratic convergence. A novel concept referred to as the `most effective section of transient-stability constraints' is introduced to reduce the massive calculation of the Jacobian and Hessian matrices of the stability constraints. The validity and the effectiveness of the proposed method have been fully verified on two test systems based on the WSCC 9-bus and UK 686-bus systems

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:152 ,  Issue: 1 )