By Topic

Wide tuning-range planar filters using lumped-distributed coupled resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carey-Smith, B.E. ; Centre for Commun. Res., Univ. of Bristol ; Warr, P.A. ; Beach, M.A. ; Nesimoglu, T.

This paper describes a discretely tunable filter topology based on lumped-distributed coupled transmission lines, particularly suitable for microelectromechanical systems switching devices. This topology is capable of simultaneous wide-band center frequency and bandwidth tuning, limited only by the electrical size of the transmission lines and the placement density of the switching devices. Low fractional bandwidths can be achieved without the need for large coupled-line spacings due to the antiphase relationship of the lumped capacitive and distributed electromagnetic coupling coefficients. The positions of the additional poles of attenuation due to the lumped capacitive coupling can be selected either above or below band leading to the choice of a narrow bandwidth design having good high-side performance or a design with compromised upper stopband performance, but with no bandwidth tuning limitations. The interaction between a pair of lumped-distributed coupled transmission lines is analyzed and the resulting model is used to develop a filter synthesis procedure. The synthesis procedure and filter performance are validated through theoretical and experimental comparisons using a filter with low-side attenuation poles

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 2 )