By Topic

High-power high-efficiency SiGe Ku- and Ka-band balanced frequency doublers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung, Juo-Jung ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI ; Hancock, T.M. ; Rebeiz, G.M.

High-efficiency monolithic SiGe balanced frequency doublers have been developed for Ku- and Ka-band applications. A novel miniature second harmonic reflector is presented, and the impact of the parasitic inductor from emitter to ground is also explored to optimize the conversion efficiency of the doubler. The Ku-band design presents an output power of 5-6 dBm from 15.4-18 GHz for an input power of 1.5 dBm. DC power consumption is 28 mW and the corresponding power-added efficiency (PAE) is 9.2%. The Ka-band design demonstrates an output power of 10.5 dBm at 36 GHz for an input power of 6 dBm while consuming 114 mW of dc power, which results in a PAE of 6.4%. It also shows high spectral purity operation with the fundamental suppression of 35 dB. To our knowledge, these are the best results for active doublers using any technology

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 2 )