By Topic

A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jiunn-Nan Hwang ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu

Full-wave analysis of the microstrip structures is performed by using the compact two-dimensional (2-D) finite-difference frequency-domain (FDFD) method with nonuniform grids and perfectly matched layer (PML). The use of nonuniform grids can significantly reduce the computational matrix size. Less memory and CPU time are required as comparing with the original compact 2-D FDFD method. For the analysis of the microstrip structures with an absorbing boundary condition, the compact 2-D FDFD method with PML is presented. The performances of different PML thickness are studied. Numerical examples are presented to demonstrate the accuracy and efficiency of this method

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 2 )