By Topic

Image-rejection CMOS low-noise amplifier design optimization techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Trung-Kien Nguyen ; RF Microelectron. Lab., Inf. & Commun. Univ., Daejeon ; Nam-Jin Oh ; Choong-Yul Cha ; Yong-Hun Oh
more authors

This paper reviews and analyzes two reported image-rejection (IR) low-noise amplifier (LNA) design techniques based on CMOS technology, i.e., the second-order active notch filer and third-order passive notch filter. The analyses and discussions are based on the quality factor of filters and the ability of the frequency control. As the solution to deal with the suitable on-chip filter, this paper proposes a new notch-filter topology that can overcome the limitations of the two previous reported studies. In addition, the LNA design method satisfying the power-cons-trained simultaneous noise and input matching, as well as the linearity optimization conditions is introduced. By using the proposed notch filter and proposed design methodology, an IR LNA used in the superheterodyne architecture is implemented. The proposed IR LNA, designed based on 0.18-mum CMOS technology with total current dissipation of 4 mA under 3-V supply voltage, is optimized for a 5.25-GHz wireless local area network with IF frequency of 500-MHz applications. The measurement results show 20.5-dB power gain, lower than 1.5-dB noise figure, -5-dBm input-referred third-order intercept point and an IR of 26 dB

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 2 )