By Topic

A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Junxiong Deng ; Dept. of Electr. & Comput. Eng., Univ. of California, La Jolla, CA ; Gudem, P.S. ; Larson, L.E. ; Asbeck, P.M.

The linearity of a silicon-germanium (SiGe) HBT power amplifier (PA) is analyzed with the help of a power-dependent coefficient Volterra technique. The effect of emitter inductance is included and the dominant sources of nonlinearity are identified. A dynamic current biasing technique is developed to improve the average power efficiency for wide-band code-division multiple-access (WCDMA) PAs. The average power efficiency is improved by more than a factor of two compared to a typical class-AB operation, while the power gain keeps roughly constant. The measured adjacent channel power ratio with 5and 10-MHz offsets at 23.9-dBm average channel output power are -33 and -58.8 dBc, respectively, and satisfies the Third-generation partnership project WCDMA specifications. The output power at the 1-dB compression point is 25.9 dBm

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:53 ,  Issue: 2 )