By Topic

High-performance direct digital frequency synthesizers using piecewise-polynomial approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De Caro, D. ; Dept. of Electron. & Telecommun. Eng., Univ. of Naples, Italy ; Strollo, A.G.M.

This paper presents new techniques to implement direct digital frequency synthesizers (DDFSs) with optimized piecewise-polynomial approximation. DDFS performances with piecewise-polynomial approximation are first analyzed, providing theoretical upperbounds for the spurious-free dynamic range (SFDR), the maximum absolute error, and the signal-to-noise ratio. A novel approach to evaluate, with reduced computational effort, the near optimal fixed-point coefficients which maximize the SFDR is described. Several piecewise-linear and quadratic DDFS are implemented in the paper by using novel, single-summation-tree architectures. The tradeoff between ROM and arithmetic circuits complexity is discussed, pointing out that a sensible silicon area reduction can be achieved by increasing ROM size and reducing arithmetic circuitry. The use of fixed-width arithmetic can be combined with the single-summation-tree approach to further increase performances. It is shown that piecewise-quadratic DDFSs become effective against piecewise-linear designs for an SFDR higher than 100 dBc. Third-order DDFSs are expected to give advantages for an SFDR higher than 180 dBc. The DDFS circuits proposed in this paper compare favorably with previously proposed approaches.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 2 )